
Už sa teším na obdobie, keď odovzdáme do tlače našu zbierku úloh z teórie pravdepodobnosti a budem sa môcť rozpísať napríklad o nedávnej návšteve
"Univerza" v Brémach, alebo o množstve zaujímavých nových odkazov. Dovtedy však zo mňa nedostanete nič viac, ako len ďalšiu zapeklitú úlohu z pravdepodobnosti. Tentokrát je podľa mňa celkom pozoruhodná a ak sa ju niekomu podarí do týždňa vyriešiť nejakým jednoduchým trikom bez použitia náhodných premenných, má u mňa dve odmeny: jeho meno sa objaví v našej zbierke a darujem mu jeden exemplár zbierky aj s podpismi autorov :-)
Dokážte, že ak súčet pravdepodobností n-tice udalostí je viac ako k-1 (pre akékoľvek k od 1 do n), tak sa s nenulovou pravdepodobnosťou realizuje aspoň k spomedzi týchto udalostí.
Napríklad ak by sme mali skupinku piatich ľudí, pričom (pravdepodobnosť, že prvý z nich spraví skúšku) + (pravdepodobnosť, že druhý z nich spraví skúšku) + ... + (pravdepodobnosť, že piaty z nich spraví skúšku) > 3, tak potom s nenulovou pravdepodobnosťou sa stane to, že skúšku spravia aspoň štyria z týchto piatich ľudí. Pritom nepredpokladáme, že udalosti urobenia skúšky sú nezávislé. (Nakoniec, predpokladať úplnú nezávislosť vypracovávania písomnej časti skúšky by naozaj bolo značne naivné.)
Na ilustračnom obrázku sú štyri množiny (mesiačiky A,B,C a kruh D), pričom neexistuje prienik všetkých štyroch. To znamená, že ak by sme akokoľvek divoko hádzali šípkou do tohto obrázka, tak súčet pravdepodobností zasiahnutia jednotlivých oblastí nemôže byť väčší ako 3.