25 januára 2012
Veže
Agátka si z 21 drevených kociek postavila niekoľko veží. Z každej veže vzala vrchnú kocku a zo zozbieraných kociek postavila novú vežu. Potom opäť vzala z každej veže najvrchnejšiu kocku a z týchto kociek postavila novú vežu a tak ďalej. Keď po dlhom čase so svojou hrou skončila, koľko mala veží?
Poznámka: Aj jednu kocku považujeme za vežu. Keď z takejto veže vezme Agátka vrchnú (čiže jedinú) kocku, táto veža zanikne a príslušná kocka sa stane súčasťou novej veže.
Menovky:
A4,
matematika,
matematika úlohy,
nevyriešené úlohy,
úlohy,
zábavné hlavolamy
20 januára 2012
Ajkina úloha
Moja doktorandka Ajka Bachratá mi včera zadala takúto domácu úlohu:
Vieme, že v istej skupine 1000 ľudí je aritmetický priemer IQ presne 100 a rozptyl je presne 900. Aký je maximálny možný počet ľudí v tejto skupine, ktorí majú IQ aspoň 150?
Ako svedomitý školiteľ som si svoju domácu úlohu vyriešil a keďže sa mi celkom páčila, rozhodol som sa, že sa o ňu podelím aj s Vami. Riešenie si nevyžaduje žiadnu náročnú matematiku, no súčasne nie je úplne priamočiare.
Poznámka: V našej úlohe nie je úplne jednoznačne povedané čo sa myslí pod pojmom "rozptyl". Keď si pozrieme príslušnú stránku wikipedie, tak zistíme, že do úvahy prichádzajú dve mierne odlišné definície: "vychýlený výberový rozptyl" a "nevychýlený výberový rozptyl". Ak by mal štatistik len súbor reálnych dát
y1,y2,...,y1000
bez znalosti presnej strednej hodnoty rozdelenia, z ktorého dáta pochádzajú, skoro určite by použil "nevychýlený výberový rozptyl". Avšak v našom príklade sa dohodnime, že kvôli jednoduchosti riešenia budeme pod pojmom "rozptyl" uvažovať "vychýlený výberový rozptyl", čiže aritmetický priemer čísiel
(y1-100)2,(y2-100)2,..., (y1000-100)2.
Ak by sme náhodne vybrali 1000 ľudí z populácie, tak ich priemerné IQ bude skutočne okolo 100, ale výberový rozptyl bude oveľa menší ako 900 (pre štandardizované testy bude približne 225). Skupina zo zadania by musela byť teda veľmi zvláštna...
Vieme, že v istej skupine 1000 ľudí je aritmetický priemer IQ presne 100 a rozptyl je presne 900. Aký je maximálny možný počet ľudí v tejto skupine, ktorí majú IQ aspoň 150?
Ako svedomitý školiteľ som si svoju domácu úlohu vyriešil a keďže sa mi celkom páčila, rozhodol som sa, že sa o ňu podelím aj s Vami. Riešenie si nevyžaduje žiadnu náročnú matematiku, no súčasne nie je úplne priamočiare.
Poznámka: V našej úlohe nie je úplne jednoznačne povedané čo sa myslí pod pojmom "rozptyl". Keď si pozrieme príslušnú stránku wikipedie, tak zistíme, že do úvahy prichádzajú dve mierne odlišné definície: "vychýlený výberový rozptyl" a "nevychýlený výberový rozptyl". Ak by mal štatistik len súbor reálnych dát
y1,y2,...,y1000
bez znalosti presnej strednej hodnoty rozdelenia, z ktorého dáta pochádzajú, skoro určite by použil "nevychýlený výberový rozptyl". Avšak v našom príklade sa dohodnime, že kvôli jednoduchosti riešenia budeme pod pojmom "rozptyl" uvažovať "vychýlený výberový rozptyl", čiže aritmetický priemer čísiel
(y1-100)2,(y2-100)2,..., (y1000-100)2.
Ak by sme náhodne vybrali 1000 ľudí z populácie, tak ich priemerné IQ bude skutočne okolo 100, ale výberový rozptyl bude oveľa menší ako 900 (pre štandardizované testy bude približne 225). Skupina zo zadania by musela byť teda veľmi zvláštna...
Menovky:
C2,
matematika,
matematika úlohy,
štatistika,
zábavné hlavolamy
05 januára 2012
Tri čísla
Nájdite tri rôzne prirodzené čísla a,b,c také, že a+b je deliteľné číslom c+1, súčasne a+c je deliteľné číslom b+1 a súčasne b+c je deliteľné číslom a+1.
Poznamenám, že túto úlohu je možné vyčerpávajúco vyriešiť (čiže nájsť všetky riešenia a tiež dokázať, že tie riešenia sú naozaj všetky) na pár riadkov a to len pomocou základnej aritmetiky a úvah týkajúcich sa deliteľnosti.
Poznamenám, že túto úlohu je možné vyčerpávajúco vyriešiť (čiže nájsť všetky riešenia a tiež dokázať, že tie riešenia sú naozaj všetky) na pár riadkov a to len pomocou základnej aritmetiky a úvah týkajúcich sa deliteľnosti.
Menovky:
B3,
matematika,
matematika úlohy,
úlohy,
zábavné hlavolamy
04 januára 2012
Studňa
Nasledovnú úlohu položili autori knihy "How to Solve It: Modern Heuristics" veľkému počtu ľudí, z ktorých každý mal aspoň bakalársky titul z matematiky, informatiky, prípadne techniky. Nechce sa mi tomu ani veriť, ale údajne len jedno percento týchto ľudí našlo (nejaké) správne riešenie, pričom mali k dispozícii celú hodinu! Pokúste sa túto úlohu vyriešiť aj Vy a napíšte nám do komentárov ako dlho Vám to trvalo.
Do "dvojrozmernej studne" s vodorovným dnom a zvislými stenami vzdialenými od seba 3 metre sme hodili dve rovné palice dĺžok 4 a 5 metrov, ktoré sa ustálili v pozícii zaznačenej na obrázku. Ako vysoko od dna leží bod, v ktorom sa tieto palice "pretínajú"?
Do "dvojrozmernej studne" s vodorovným dnom a zvislými stenami vzdialenými od seba 3 metre sme hodili dve rovné palice dĺžok 4 a 5 metrov, ktoré sa ustálili v pozícii zaznačenej na obrázku. Ako vysoko od dna leží bod, v ktorom sa tieto palice "pretínajú"?
Menovky:
A2,
matematika,
matematika úlohy,
úlohy
Prihlásiť na odber:
Príspevky (Atom)