Navrhovanie experimentov je pre mňa už skoro desať rokov nevyčerpateľný zdroj inšpirácie. Teória takzvaných blokových návrhov obsahuje matematické tvrdenia, ktoré sa dajú preformulovať do podoby nasledovného príkladu kombinujúceho teóriu grafov a lineárnu algebru.
Pýtame sa, či existuje šestica vektorov x1,2, x1,3, x1,4, x2,3, x2,4, x3,4 v trojrozmernom priestore, ktorá charakterizuje súvislosť obyčajných grafov so štyrmi vrcholmi týmto spôsobom: Graf s hranami h1, h2, ..., hn je súvislý vtedy a len vtedy, keď sa každý vektor v trojrozmernom priestore dá napísať ako lineárna kombinácia vektorov xh1, xh2, ..., xhn.
Ekvivalentná formulácia príkladu: Pýtame sa, či existuje šestica bodov x1,2, x1,3, x1,4, x2,3, x2,4, x3,4 v trojrozmernom priestore s nasledovnou vlastnosťou: Graf s hranami h1, h2, ..., hn je nesúvislý vtedy a len vtedy, keď existuje rovina prechádzajúca počiatkom súradnicového systému obsahujúca súčasne všetky body xh1, xh2, ..., xhn.